Saturday, September 7, 2019
The genetic basis of glucose-6-phosphate dehydrogenase (G6PD) Essay
The genetic basis of glucose-6-phosphate dehydrogenase (G6PD) deficiency - Essay Example 008, pp.64, define G6PD deficiency as ââ¬Å"an X-linked, hereditary genetic defect due to mutations in the G6PD gene, which cause functional variants with many biochemical and clinical phenotypesâ⬠. Most of the mutations are single base changes that result in amino acid substitutions. G6PD deficiency presents itself clinically in the form of acute haemolytic anaemia (Capellini & Fiorelli, 2008). The gene responsible for the production of the enzyme G6PD is the G6PD gene G6PD is the catalyst responsible for oxidising glucose-6-phosphate to 6-phosphogluconate, while at the same time it is also responsible for the reduction of the oxidised form of nicotanamide adenine dinucleotide phosphate (NADP+) to nicotinamide adenine dinucleotide phosphate (NADPH). This function of G6PD in the production of NADPH is important, as it is NADPH that plays a role as a cofactor in many biosynthetic reactions and maintaining glutathione in its reduced form (Carter & Gross, 2008). Reduced glutathione functions as a scavenger within cells, removing the dangerous oxidative metabolites in the cells. In addition with assistance from the enzyme glutathione peroxidase, it neutralizes hydrogen peroxide, which is harmful to the cell, by converting it to water. G6PD and its role in the production of NAPDH is important to red blood cells, as NAPDH is the sole contributor of protection to the red blood cells against oxidative stresses, The importance of G6PD to the red blood cells lies in it being the sole source of NAPDH and the protection NAPDH offers the red blood cells (Carter & Gross, 2008). The G6PD gene that is responsible for the enzyme Glucose-6-Phosphate Dehydrogenase is found on the terminal region of the long arm of the X chromosome (Xq28), at a distance of less than 2 centi-Morgan centrometric to the Factor VIII gene. G6PD deficiency is a genetic condition, wherein the molecular grounds for the disease stems from mutations in the G6PD locus at Xq28. The length of the gene is 18
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.